Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.5 The Chain Rule - 14.5 Exercises - Page 986: 56

Answer

$x^2\dfrac{\partial ^2 f }{\partial x^2} + 2xy \dfrac{\partial ^2 f }{\partial x \partial y} +y^2 \dfrac{\partial ^2 f }{\partial y^2} =n(n-1) f(x,y)$

Work Step by Step

We have: $\dfrac{d(tx)}{dt}=x$ and $\dfrac{d(ty)}{dt}=y$ $\implies \dfrac{d^2(tx)}{dt^2}=x; \\ \dfrac{d^2(ty)}{dt^2}=0$ Now, $f_x[\dfrac{d(tx)}{dt}]+f_y[\dfrac{d(ty)}{dt}]=nt^{n-1}f(x,y)$ $[x(xf_{xx}+yf_{xy}+(0)f_x]+[y(y(f_{yy}+xf_{xy})+(0)f_y]=n(n-1) t^{n-1} f(x,y)$ $\implies x^2f_{xx} +xyf_{xy} +xy f_{xy}=n(n-1) t^{n-2} f(x,y)$ Set $t=1$ So, $x^2f_{xx} + 2xyf_{xy} +y^2 f_{yy}=n(n-1) f(x,y)$ Therefore, $x^2\dfrac{\partial ^2 f }{\partial x^2} + 2xy \dfrac{\partial ^2 f }{\partial x \partial y} +y^2 \dfrac{\partial ^2 f }{\partial y^2} =n(n-1) f(x,y)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.