Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.5 The Chain Rule - 14.5 Exercises - Page 986: 55

Answer

(a) $f(x,y)$ is homogeneous function of degree $3$. (b) \[x\frac{\partial f}{\partial x}+y\frac{\partial f}{\partial y}=nf\]

Work Step by Step

(a) Given that: \[f(x,y)=x^2y+2xy^2+5y^3\] \[f(tx,ty)=(tx)^2(ty)+2(tx)(ty)^2+5(ty)^3\] \[f(tx,ty)=t^3x^2y+2t^3xy^2+5t^3y^3\] \[f(tx,ty)=t^3(x^2y+2xy^2+5y^3)\] \[\Rightarrow f(tx,ty)=t^3f(x,y)\] Therefore $f(x,y)$ is homogeneous function of degree $3$. (b) It is given that $f$ is homogeneous function of degree $n$ \[\Rightarrow f(x,y)=x^nf\left(1,\frac{y}{x}\right)\] \[\Rightarrow f(x,y)=x^ng\left(\frac{y}{x}\right)\] Differentiate $f$ with respect to $x$ treating $y$ as constant using chain rule: \[\frac{\partial f}{\partial x}=nx^{n-1}g+x^{n}g'\left(\frac{y}{x}\right)\cdot\frac{\partial }{\partial x}\left(\frac{y}{x}\right)\] \[\frac{\partial f}{\partial x}=nx^{n-1}g+x^{n}g'\left(\frac{y}{x}\right)\cdot\left(\frac{-y}{x^2}\right)\] \[\frac{\partial f}{\partial x}=nx^{n-1}g-x^{n-2}yg'\left(\frac{y}{x}\right)\;\;\;\;\;\;\;\ldots (1)\] Differentiate $f$ with respect to $y$ treating $x$ as constant using chain rule: \[\frac{\partial f}{\partial y}=x^{n}g'\left(\frac{y}{x}\right)\cdot\frac{\partial }{\partial y}\left(\frac{y}{x}\right)\] \[\frac{\partial f}{\partial y}=x^{n}g'\left(\frac{y}{x}\right)\cdot\left(\frac{1}{x}\right)\] \[\frac{\partial f}{\partial y}=x^{n-1}g'\left(\frac{y}{x}\right)\;\;\;\;\;\;\;\;\ldots (2)\] Consider $x\displaystyle\frac{\partial f}{\partial x}+y\displaystyle\frac{\partial f}{\partial y}$ Using (1) and (2) \begin{eqnarray*} x\displaystyle\frac{\partial f}{\partial x}+y\displaystyle\frac{\partial f}{\partial y}&=&x\left[nx^{n-1}g-x^{n-2}yg'\left(\frac{y}{x}\right)\right]+y\left[x^{n-1}g'\left(\frac{y}{x}\right)\right]\\ &=&nx^{n}g-x^{n-1}yg'\left(\frac{y}{x}\right)+x^{n-1}yg'\left(\frac{y}{x}\right)\\ &=&nx^ng\\ &=&nf(x,y) \end{eqnarray*} Hence Prove.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.