Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.5 The Chain Rule - 14.5 Exercises - Page 985: 52

Answer

(a) $\dfrac{\partial z }{\partial r}=(\cos \theta) \dfrac{\partial z}{\partial x} +(\sin \theta) \dfrac{\partial z}{\partial y}$ (b)$\dfrac{\partial z }{\partial \theta}=r \cos \theta (\dfrac{\partial z}{\partial y})-r \sin \theta \dfrac{\partial z}{\partial x} $ (c) $\dfrac{\partial^2 z }{\partial r \partial \theta}=-\sin \theta (\dfrac{\partial z}{\partial x})+ (\cos \theta) (\dfrac{\partial z}{\partial y}) -r \sin \theta \cos \theta (\dfrac{\partial^2 z}{\partial x^2})+r \sin \theta \cos \theta (\dfrac{\partial^2 z}{\partial y^2})+r( \cos^2 \theta -sin^2 \theta ) (\dfrac{\partial^2 z}{\partial y \partial x})$

Work Step by Step

a) $\dfrac{\partial z }{\partial r}=( \dfrac{\partial z}{\partial x}) \times (\dfrac{dx}{dr}) +( \dfrac{\partial z}{\partial y}) \times (\dfrac{dy}{dr})$ or, $\dfrac{\partial z }{\partial r}=(\cos \theta) \dfrac{\partial z}{\partial x} +(\sin \theta) \dfrac{\partial z}{\partial y}$ (b) $\dfrac{\partial z }{\partial \theta}=( \dfrac{\partial z}{\partial x}) \times (\dfrac{dx}{d\theta}) +( \dfrac{\partial z}{\partial y}) \times (\dfrac{dy}{d\theta})$ $\dfrac{\partial z }{\partial \theta}=(r \cos \theta) \times (\dfrac{\partial z}{\partial y})-(r \sin \theta) (\dfrac{\partial z}{\partial x})$ (c) $\dfrac{\partial z }{\partial r}=( \dfrac{\partial z}{\partial x}) \times (\dfrac{dx}{dr}) +( \dfrac{\partial z}{\partial y}) \times (\dfrac{dy}{dr})$ $\implies \dfrac{\partial z }{\partial r}=( \dfrac{\partial z}{\partial x}) \times (\cos \theta) +( \dfrac{\partial z}{\partial y}) \times (\sin \theta)$ and $\dfrac{\partial^2 z }{\partial r \partial \theta}=-\sin \theta (\dfrac{\partial z}{\partial x})+ (\cos \theta) (\dfrac{\partial z}{\partial y}) -r \sin \theta \cos \theta (\dfrac{\partial^2 z}{\partial x^2})+r \sin \theta \cos \theta (\dfrac{\partial^2 z}{\partial y^2})+r( \cos^2 \theta -\sin^2 \theta ) (\dfrac{\partial^2 z}{\partial y \partial x})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.