Answer
$4.65 Hz/s$ and $576.6$ Hz
Work Step by Step
We have the perceived frequency:$=( 460) [\dfrac{332+34}{332-40}]=576.6$ Hz
Now, we have
$\dfrac{d}{dt}[\dfrac{C+V_0}{C-f_s}f] =\dfrac{(C-f_s)(C+V_0)'-(C+V_0)(C-V_s)}{(C-f_s)^2}f$
We need to re-write the above equation as: $\dfrac{d}{dt}[\dfrac{C+V_0}{C-f_s}f] =\dfrac{(C-f_s)(V_0)'+(C+V_0)(V_s)}{(C-f_s)^2}f$
Now, substitute the given values, then we have:
$\dfrac{(C-f_s)(V_0)'+(C+V_0)(V_s)}{(C-f_s)^2}f = ( 460)[\dfrac{(332-40)(1.2)+(332+34)(1.4)}{(332-40)^2}] \\ =4.65 Hz/s$