Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.3 Partial Derivatives - 14.3 Exercises - Page 964: 40


For every $p\in\{1,2,\ldots,n\}$ the derivative is $$\frac{\partial}{\partial x_p}u=p\cos(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n).$$

Work Step by Step

We will choose some $p\in\{1,2,\ldots,n\}$ and differentiate with respect to $x_p$ while holding all other $x_i$-s where $i\neq p$ constant: $$\frac{\partial}{\partial x_p}u=\\\frac{\partial}{\partial x_p}\sin(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n)=\\ \cos(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n)\times\\ \times\frac{\partial}{\partial x_p}(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n)=\\ \cos(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n)\times\\ \times\left(\underbrace{0+\ldots 0+\frac{\partial}{\partial x_p}(px_p)}+0+\ldots0\right)=\\ p\cos(x_1+\ldots+(p-1)x_{p-1}+px_p+(p+1)x_{p+1}+\ldots+nx_n).$$ This formula works for every $p\in\{1,2,\ldots,n\}$ so if we want to get a particular first partial derivative we just put the corresponding value for $p$ (e.g. if we want $\partial u/\partial x_3$ we put $p=3$).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.