Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 14 - Partial Derivatives - 14.1 Functions of Several Variables - 14.1 Exercises - Page 940: 12


(a) $g(1,2,3)=24$. (b) The domain is $\mathcal{D}=\{(x,y,z)|x+y+z\leq10\}$. Geometrically, it is the space under the plane (including it) that intercepts coordinate axes at $x=10$, $y=10$ and $z=10$, respectively.

Work Step by Step

(a) By direct substitution we have $$g(1,2,3)=1^3\cdot2^2\cdot3\sqrt{10-1-2-3}=1\cdot4\cdot3\sqrt{4}=24.$$ (b) The argument of the square root has to be nonnegative i.e. $10-x-y-z\geq0$ which gives $$x+y+z\le10.$$ Consider the equation $x+y+z=10$. This is the equation of the plane determined by the triangle with vertices at coordinate axes with coordinates $(10,0,0)$, $(0,10,0)$ and $(0,0,10)$ (when we put any two coordinates to be zero in the equation we get that the third one has to be 10). The domain is the region of the space under this plane (including the points of the plane).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.