Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 13 - Vector Functions - 13.2 Derivatives and Integrals of Vector Functions - 13.2 Exercises - Page 901: 39

Answer

$\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$

Work Step by Step

As we are given that $\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ Suppose $I=\int (\sec^2 ti+t(t^2+1)^3j+t^2 \ln t k)dt$ $I=\int \sec^2 tdti+\int t(t^2+1)^3dtj+\int t^2 \ln t dtk$ $I=\tan ti+ Pj+Qk$ ... (a) Here, $P=\int t(t^2+1)^3dt$ and $Q=\int t^2 \ln t dt$ i) Consider $P=\int t(t^2+1)^3dt$ Put $p=t^2+1 $ gives $dp=2tdt$ Thus, $P=\frac{1}{2}\int p^3dp=\frac{1}{8}p^4=\frac{1}{8}(t^2+1)^4$ ii) $Q=\int t^2 \ln t dt=\ln t (1/3t^3)-\int (1/3t^3) \dfrac{1}{t} dt=\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3$ From equation (a): $I=\tan ti+\frac{1}{8}(t^2+1)^4j+(\dfrac{1}{3}t^3 \ln t-\dfrac{1}{9}t^3)k+C$; (C is the constant of integration)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.