Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - Problems Plus - Problems - Page 829: 14

Answer

$\frac{2^{p}}{2^{p}-2}$

Work Step by Step

$$\frac{(1+\frac{1}{3^{p}}+\frac{1}{5^{p}}+\ldots)+(\frac{1}{2^{p}}+\frac{1}{4^{p}}+\ldots)}{(1+\frac{1}{3^{p}}+\frac{1}{5^{p}}+\ldots)-(\frac{1}{2^{p}}+\frac{1}{4^{p}}+\ldots)}=\frac{S+T}{S-T}$$ $$2^{p}T=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\frac{1}{4^{p}}+\frac{1}{5^{p}}+\ldots$$ $$2^{p}T=S+T$$ $$2^{p}T-2T=S-T$$ $$T(2^{p}-2)=S-T$$ so: $$\frac{S+T}{S-T}=\frac{2^{p}T}{T(2^{p}-2)}=\frac{2^{p}}{2^{p}-2}$$, $p \gt 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.