Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - Problems Plus - Problems - Page 829: 13

Answer

$-\ln(2)$

Work Step by Step

$$\sum_{n=2}^{\infty}\ln\left(1-\frac{1}{n^{2}}\right)$$ $$=\sum_{n=2}^{\infty}\ln\left(\frac{n^{2}-1}{n^{2}}\right)$$ $$=\sum_{n=2}^{\infty}\ln(n^{2}-1)-\ln(n^{2})$$ $$=\sum_{n=2}^{\infty}\ln(n-1)+\ln(n+1)-2\ln(n)$$ $$=\sum_{n=2}^{\infty}\ln(n-1)+\sum_{n=2}^{\infty}\ln(n+1)-2\sum_{n=2}^{\infty}\ln(n)$$ $$=(\ln(1)+\ln(2)+\ln(3)+\ldots)+(\ln(3)+\ln(4)+\ldots)+(-2\ln(2)-2\ln(3)+\ldots)$$ $$=(\ln(2)+\ln(3)+\ldots)+(\ln(3)+\ln(4)+\ldots)+(-2\ln(2)-2\ln(3)+\ldots)$$ $$=(\ln(2)+2\ln(3)+2\ln(4)\ldots)+(-2\ln(2)-2\ln(3)+\ldots)=\ln(2)-2\ln(2)=-\ln(2)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.