Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 11 - Infinite Sequences and Series - 11.10 Taylor and Maclaurin Series - 11.10 Exercises - Page 812: 56


$c+\Sigma_{n=0}^{\infty}\dfrac{(-1)^{n}x^{4n+3}}{(4n+3)(2n+1)}$ $R=1$

Work Step by Step

$arctan(x^{2})=\Sigma_{n=0}^{\infty}\dfrac{(-1)^{n}x^{4n+2}}{(2n+1)}$ $=x^{2}-\frac{1}{3}x^{6}+\frac{1}{5}x^{10}-\frac{1}{7}x^{14}+......+\frac{(-1)^{n}x^{4n+2}}{2n+1}+...$ Now, $\int arctan(x^{2})dx=(x^{2}-\frac{1}{3}x^{6}+\frac{1}{5}x^{10}-\frac{1}{7}x^{14}+......+\frac{(-1)^{n}x^{4n+2}}{2n+1}+...)dx$ $=c+\Sigma_{n=0}^{\infty}\dfrac{(-1)^{n}x^{4n+3}}{(4n+3)(2n+1)}$ $R=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.