Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 10 - Parametric Equations and Polar Coordinates - Review - Exercises - Page 730: 37


$2(5\sqrt 5-1)$

Work Step by Step

$x=3 t^{2}$, $y=2t^{3}$ on $0\leq t\leq 2$ $x'=6t$, $y'=6t^{2}$ on $0\leq t\leq 2$ Length of the curve is given as: $L=\int_{0}^{2}\sqrt {(6t)^2+(6t^{2})^2} dt$ $=\int_{0}^{2}\sqrt {36t^2(1+t^{2})} dt$ Let $u=1+t^2$ then $du=2tdt$ Also, when $t=0$ then $u=1$ and $t=2$ then $u=5$ Thus, $L=3\int_{1}^{5}u^{1/2} du$ or, $L=2(5\sqrt 5-1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.