Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Appendix G - Complex Numbers - G Exercises - Page A56: 27


$5[\displaystyle \cos(\tan^{-1}\frac{4}{3})+i\sin(\tan^{-1}\frac{4}{3})]$ $=5[\displaystyle \cos(0.927)+i\sin(0.927)]$

Work Step by Step

We are given: $z=3+4i$ To find $r$ of a complex number $a+bi$, we use: $\sqrt{a^2+b^2}$: $r=\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=5$ To find $\theta$, we use $\tan{\theta}=\frac{b}{a}$: $\displaystyle \tan\theta=\frac{4}{3}$ And since $z$ is in the 1st quadrant: $\theta=\tan^{-1} (\displaystyle \frac{4}{3})=0.927$ To put the number in polar form, we use $r(\cos{\theta}+i\sin{\theta})$: $5[\displaystyle \cos(\tan^{-1}\frac{4}{3})+i\sin(\tan^{-1}\frac{4}{3})]$ $=5[\displaystyle \cos(0.927)+i\sin(0.927)]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.