Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 9 - Further Applications of the Integral and Taylor Polynomials - 9.1 Arc Length and Surface Area - Exercises - Page 469: 48

Answer

$$2 \pi R h $$

Work Step by Step

Since $$x^2+y^2=R^2 $$ Then \begin{aligned} 1+\left(x^{\prime}\right)^{2} &=1+\left(-\frac{y}{\sqrt{R^{2}-y^{2}}}\right)^{2} \\ &=1+\frac{y^{2}}{R^{2}-y^{2}} \\ &=\frac{R^{2}}{R^{2}-y^{2}} \end{aligned} Hence \begin{aligned} \text { Surface Area }&=2 \pi \int_{R-h}^{R} \sqrt{R^{2}-y^{2}} \sqrt{\frac{R^{2}}{R^{2}-y^{2}}} d y \\ &=2 \pi \int_{R-h}^{R} \sqrt{R^{2}-y^{2}} \frac{R}{\sqrt{R^{2}-y^{2}}} d y \\ &=2 \pi R \int_{R-h}^{R} d y \\ &=2 \pi R[y]_{R-h}^{R} \\ &=2 \pi R[R-(R-h)] \\ &=2 \pi R h \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.