Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 461: 104

Answer

$$0.6087$$

Work Step by Step

Given $$\int_{5}^{9} \cos \left(x^{2}\right) d x$$ Since $\Delta x=\dfrac{b-a}{N}=\dfrac{4}{8}=0.5$ , then by using Simpson’s rule \begin{align*} S_{n}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)..+4f(x_{n-1})+f(x_n)\right]\\ S_{8}&=\dfrac{\Delta x}{3}\left[f(x_0)+4f(x_1)+2f(x_2)+4f(x_3)+2f(x_4)+4f(x_5) +2f(x_{6}) +4f(x_{7})+f(x_{8})\right] \\ &=\dfrac{1}{6}\left[f(5)+4f(5.5)+2f(6)+4f(6.5)+2f(7) +4f(7.5)+2f(8)+4f(8.5)+f(9) \right]\\ &\approx 0.6087 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.