Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.6 Strategies for Integration - Exercises - Page 431: 43

Answer

$$\ln |\sec x|+\frac{1}{2}\cos^2 x+C$$

Work Step by Step

\begin{aligned} \int \sin ^{2} x \cdot \tan x d x &=\int\left(1-\cos ^{2} x\right) \tan x d x \\ &=\int \tan x d x-\int \cos ^{2} x \tan x d x \\ &=\int \tan x d x-\int \cos ^{2} x \frac{\sin x}{\cos x} d x \\ &=\int \tan x d x-\int \cos ^{2} x \frac{\sin x}{\cos x} d x \\ &=\int \tan x d x-\int \cos x \sin x d x\\ &=\ln |\sec x|+\frac{1}{2}\cos^2 x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.