Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.1 Integration by Parts - Exercises - Page 396: 77

Answer

$$\frac{1}{4}\left[x^{4} \sin x^{4}+\cos x^{4}\right]+C$$

Work Step by Step

Given $$ \int x^{7} \cos \left(x^{4}\right) d x$$ Let $$ z=x^4 \ \ \ \ \ \ dz=4x^3 dx $$ Then $$ \int x^{7} \cos \left(x^{4}\right) d x= \frac{1}{4} \int z \cos (z) d z$$ Use integration by parts \begin{align*} u&= z\ \ \ \ \ \ \ \ \ dv=\cos z\\ du&=dz\ \ \ \ \ \ \ \ \ v=\sin z \end{align*} Hence \begin{aligned} \int x^{7} \cos \left(x^{4}\right) d x &=\frac{1}{4} \int z \cos (z) d z \\ &=\frac{1}{4}\left[z \sin z-\int \sin z d z\right] \\ &=\frac{1}{4}[z \sin z+\cos z]+C \\ &=\frac{1}{4}\left[x^{4} \sin x^{4}+\cos x^{4}\right]+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.