#### Answer

$5.488 \times 10^6 \ J$

#### Work Step by Step

The volume of one layer is equal to:
$ 32 \Delta y \mathrm{m}^{3}$.
The force of one layer is equal to:
$9.8 \times 1000 \times 32 \Delta y \ N=313600 \Delta y \ N$
Therefore, the work done can be computed as:
$ W=\int_{0}^{5} 313600 (y+1) \ d y\\=313600 [ \dfrac{(y+1)^2}{2}]_0^5 \\ = 156800 (y+1)^2|_0^5 \\ \approx 5.488 \times 10^6 \ J$