Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - Chapter Review Exercises - Page 222: 44

Answer

$x=0,\ \ x=-6,\ x=6$

Work Step by Step

Given $$y=\frac{x}{\left(x^{2}-4\right)^{1 / 3}}$$ Since \begin{align*} y'&=\frac{\frac{d}{dx}\left(x\right)\left(x^2-4\right)^{\frac{1}{3}}-\frac{d}{dx}\left(\left(x^2-4\right)^{\frac{1}{3}}\right)x}{\left(\left(x^2-4\right)^{\frac{1}{3}}\right)^2}= \frac{x^2-12}{3\left(x^2-4\right)^{\frac{4}{3}}} \\ y''&=\frac{\frac{d}{dx}\left(x^2-12\right)\left(x^2-4\right)^{\frac{4}{3}}-\frac{d}{dx}\left(\left(x^2-4\right)^{\frac{4}{3}}\right)\left(x^2-12\right)}{3\left(\left(x^2-4\right)^{\frac{4}{3}}\right)^2}= \frac{2x\left(-x^2+36\right)}{9\left(x^2-4\right)^{\frac{7}{3}}} \end{align*} Then $f''(x)=0$ for $x=0,\ \ x=\pm 6$. We note that $y''$ changes from negative to positive around these critical points. Hence, there exist inflection points at $x=0,\ \ x=-6,\ x=6$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.