Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.1 Linear Approximation and Applications - Exercises - Page 172: 18

Answer

$$0.01544516 ,\ \ 0.015625,\ \ ,\ \ \ \ 0.000179837$$

Work Step by Step

Given $$16.5^{1 / 4}-16^{1 / 4}$$ Consider $f(x)= x^{1/4}$, $a= 16$, $\Delta x= 0.5$, since \begin{align*} f'(x) &= \frac{1}{4}x^{-3/4}\\ f'(16)&= 0.03125 \end{align*} Then the linear approximation is given by \begin{align*} \Delta &f \approx f^{\prime}(a) \Delta x\\ &= (0.5)(0.03125)\\ &= 0.015625 \end{align*} and the actual change is given by \begin{align*} \Delta f&=f(a+\Delta x)-f(a)\\ &=f(16.5)-f(16) \\ &\approx 0.01544516 \end{align*} Hence the error is $$ | 0.015625- 0.01544516 | \approx 0.000179837 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.