Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 154: 64

Answer

The coordinates of the four points at which the tangent line is horizontal are $\left(\dfrac{\sqrt3}{\sqrt2},\dfrac{1}{\sqrt2}\right)$, $\left(-\dfrac{\sqrt3}{\sqrt2},\dfrac{1}{\sqrt2}\right)$, $\left(\dfrac{\sqrt3}{\sqrt2},-\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt3}{\sqrt2},-\dfrac{1}{\sqrt2}\right)$.

Work Step by Step

Firstly differentiate $(x^2 + y^2)^2 = 4(x^2 − y^2)$ with respect to $x$. We get, $\dfrac{d}{dx}\left((x^2 + y^2)^2\right)=4\dfrac{d}{dx}(x^2 − y^2)$ $\implies\dfrac{d}{dx}\left((x^2 + y^2)^2\right)=4\dfrac{d(x^2)}{dx}-4\dfrac{d(y^2)}{dx}$ Now use the chain rule as follows. We get, $2(x^2+y^2)\dfrac{d}{dx}(x^2 + y^2)=8x-8y\dfrac{dy}{dx}$ $\implies 2(x^2+y^2)\left(2x+2y\dfrac{dy}{dx}\right)=8x-8y\dfrac{dy}{dx}$ Since, if the tangent line is horizontal, then $\dfrac{dy}{dx}=0$ Substitute $\dfrac{dy}{dx}=0$ in $2(x^2+y^2)\left(2x+2y\dfrac{dy}{dx}\right)=8x-8y\dfrac{dy}{dx}$. We get, $2(x^2+y^2)(2x+2y(0))=8x-8y(0)$ Solve further as follows: $4x(x^2+y^2)=8x$ $\implies x^2+y^2=2$ $\implies y^2=2-x^2$ Now substitute $y^2=2-x^2$ in $(x^2 + y^2)^2 = 4(x^2 − y^2)$. We get, $(x^2 +2-x^2)^2 = 4(x^2 − 2+x^2)$ Simplify to find $x$. We get, $(2)^2 = 4(2x^2 − 2)$ or $4=4(x^2-2)$ $\implies x^2=\dfrac{3}{2}$ $\implies x=\pm\dfrac{\sqrt3}{\sqrt2}$ Now subtitute $x=\dfrac{\sqrt3}{\sqrt2}$ and $x=-\dfrac{\sqrt3}{\sqrt2}$ one by one in $y^2=2-x^2$. If we substitute $x=\dfrac{\sqrt3}{\sqrt2}$, then we get $y^2=2-\left(\dfrac{\sqrt3}{\sqrt2}\right)^2=2-\dfrac{3}{2}=\dfrac{1}{2}$. $\implies y=\pm\dfrac{1}{\sqrt2}$ And if we substitute $x=-\dfrac{\sqrt3}{\sqrt2}$, then we get $y^2=2-\left(-\dfrac{\sqrt3}{\sqrt2}\right)^2=2-\dfrac{3}{2}=\dfrac{1}{2}$. $\implies y=\pm\dfrac{1}{\sqrt2}$ So, the coordinates of the four points at which the tangent line is horizontal are $\left(\dfrac{\sqrt3}{\sqrt2},\dfrac{1}{\sqrt2}\right)$, $\left(-\dfrac{\sqrt3}{\sqrt2},\dfrac{1}{\sqrt2}\right)$, $\left(\dfrac{\sqrt3}{\sqrt2},-\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt3}{\sqrt2},-\dfrac{1}{\sqrt2}\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.