Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 154: 52

Answer

For $x=1\pm\sqrt2$, $\dfrac{dx}{dy}$ is equal to zero. Since $\dfrac{dx}{dy}$ is equal to zero only when the tangent line is vertical. The tangent lines at $x = 1 ±\sqrt2$ to the conchoid with equation $(x − 1)^2(x^2 + y^2) = 2x^2$ are vertical.

Work Step by Step

Firstly differentiate $(x − 1)^2(x^2 + y^2) = 2x^2$ with respect to $y$ using product rule and chain rule. $\dfrac{d}{dy}\left((x-1)^2(x^2+y^2)\right)=\dfrac{d}{dy}\left(2x^2\right)$ $\implies (x-1)^2\dfrac{d}{dy}\left((x^2+y^2)\right)+(x^2+y^2)\dfrac{d}{dy}\left((x-1)^2\right)=4x\dfrac{dx}{dy}$ $\implies (x-1)^2\left(2x\dfrac{dx}{dy}+2y\right)+(x^2+y^2)\times2(x-1)\dfrac{d}{dy}\left(x-1\right)=4x\dfrac{dx}{dy}$ $\implies (x-1)^2\left(2x\dfrac{dx}{dy}+2y\right)+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=4x\dfrac{dx}{dy}$ $\implies 2x(x-1)^2\dfrac{dx}{dy}+2y(x-1)^2+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=4x\dfrac{dx}{dy}$ Now isolate terms with $\dfrac{dx}{dy}$. We get, $2x(x-1)^2\dfrac{dx}{dy}-4x\dfrac{dx}{dy}+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=-2y(x-1)^2$ Now take $\dfrac{dx}{dy}$ common. $\left(2x(x-1)^2-4x+2(x^2+y^2)(x-1)\right)\dfrac{dx}{dy}=-2y(x-1)^2$ $\implies \dfrac{dx}{dy}=\dfrac{-2y(x-1)^2}{2x(x-1)^2-4x+2(x^2+y^2)(x-1)}$ Now substitute $x=1+\sqrt2$ in $(x − 1)^2(x^2 + y^2) = 2x^2$ and then solve for $y$. $(1+\sqrt2 − 1)^2((1+\sqrt2)^2 + y^2) = 2(1+\sqrt2)^2$ $\implies (\sqrt2 )^2(1+2+2\sqrt2 + y^2) = 2(1+2+2\sqrt2)$ $\implies 2(3+2\sqrt2 + y^2) = 2(3+2\sqrt2)$ $\implies 3+2\sqrt2 + y^2 = 3+2\sqrt2$ $\implies y^2 = 0$ or $y=0$ Now substitute $x=1-\sqrt2$ in $(x − 1)^2(x^2 + y^2) = 2x^2$ and then solve for $y$. $(1-\sqrt2 − 1)^2((1-\sqrt2)^2 + y^2) = 2(1-\sqrt2)^2$ $\implies (-\sqrt2 )^2(1+2-2\sqrt2 + y^2) = 2(1+2-2\sqrt2)$ $\implies 2(3-2\sqrt2 + y^2) = 2(3-2\sqrt2)$ $\implies 3-2\sqrt2 + y^2 = 3-2\sqrt2$ $\implies y^2 = 0$ or $y=0$ If we substitute $y=0$ in $\dfrac{dx}{dy}=\dfrac{-2y(x-1)^2}{2x(x-1)^2-4x+2(x^2+y^2)(x-1)}$. We get, $\dfrac{dx}{dy}=0$. Since $y=0$ when $x=1\pm\sqrt2$ Thus, for $x=1\pm\sqrt2$, $\dfrac{dx}{dy}=0$. Since $\dfrac{dx}{dy}$ is equal to zero only when the tangent line is vertical. The tangent lines at $x = 1 ±\sqrt2$ to the conchoid with equation $(x − 1)^2(x^2 + y^2) = 2x^2$ are vertical.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.