Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 147: 82

Answer

$$kb^{\frac{1-m}{m}} (b-a)$$

Work Step by Step

Given $$M(t)=\left(a+(b-a)\left(1+k m t+\frac{1}{2}(k m t)^{2}\right)\right)^{1 / m}$$ Since \begin{align*} M'(t)&= \frac{1}{m} \left(a+(b-a)\left(1+k m t+\frac{1}{2}(k m t)^{2}\right)\right)^{(1 / m)-1} \left[km(b-a) +k^2m^2(b-a) t \right]\\ &= \left(a+(b-a)\left(1+k m t+\frac{1}{2}(k m t)^{2}\right)\right)^{(1 / m)-1} \left[k(b-a) +k^2m(b-a) t \right] \end{align*} Then \begin{align*} M'(0)&= \left(a+(b-a)\left(1+k m (0)+\frac{1}{2}(k m (0))^{2}\right)\right)^{(1 / m)-1} \left[k(b-a) +k^2m(b-a)(0) \right]\\ &=kb^{\frac{1-m}{m}} (b-a) \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.