Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.5 Surface Integrals of Vector Fields - Preliminary Questions - Page 968: 7

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = 0$

Work Step by Step

Since ${\bf{F}}$ is a unit vector field so, ${\bf{F}}\cdot{\bf{n}} = \cos \theta $. $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_1}}^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_2}}^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_3}}^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_1}}^{} \cos 85^\circ {\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_2}}^{} \cos 90^\circ {\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_3}}^{} \cos 95^\circ {\rm{d}}S$ Since $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_1}}^{} {\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_2}}^{} {\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_3}}^{} {\rm{d}}S = 0.2$, so $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = 0.2\left( {\cos 85^\circ + \cos 90^\circ + \cos 95^\circ } \right) = 0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.