Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.5 Surface Integrals of Vector Fields - Preliminary Questions - Page 968: 5

Answer

(a) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = 0$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \pi $ (c) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \pi $

Work Step by Step

Since $S$ is oriented with normal in the positive $z$-direction, we have ${\bf{n}} = \left( {0,0,1} \right)$. (a) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left[ {\left( {1,0,0} \right)\cdot\left( {0,0,1} \right)} \right]{\rm{d}}S = 0$ (b) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left[ {\left( {0,0,1} \right)\cdot\left( {0,0,1} \right)} \right]{\rm{d}}S$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = Area\left( S \right)$ Since the area of the disk ${x^2} + {y^2} \le 1$ is $\pi $, so $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \pi $. (c) $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left( {{\bf{F}}\cdot{\bf{n}}} \right){\rm{d}}S = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} \left[ {\left( {1,1,1} \right)\cdot\left( {0,0,1} \right)} \right]{\rm{d}}S$ $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} 1{\rm{d}}S = Area\left( S \right)$ Since the area of the disk ${x^2} + {y^2} \le 1$ is $\pi $, so $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} {\bf{F}}\cdot{\rm{d}}{\bf{S}} = \pi $.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.