Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.4 Parametrized Surfaces and Surface Integrals - Preliminary Questions - Page 957: 4

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S \approx 0.6$

Work Step by Step

We can approximate the integral by $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S \approx \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_1}}^{} 0.9{\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_2}}^{} 1{\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_3}}^{} 1.1{\rm{d}}S$ $ = 0.9\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_1}}^{} {\rm{d}}S + \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_2}}^{} {\rm{d}}S + 1.1\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{{S_3}}^{} {\rm{d}}S$ $ = 0.9 \times 0.2 + 0.2 + 1.1 \times 0.2$ $ = 0.6$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_S^{} f\left( {x,y,z} \right){\rm{d}}S \approx 0.6$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.