Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.3 Conservative Vector Fields - Exercises - Page 945: 2

Answer

(a) we verify that ${\bf{F}} = \nabla f$ (b) $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 78$ (c) $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 4\ln 2$ (d) because ${\bf{F}}$ and $f$ contain the logarithmic function $\ln \left( {xy} \right)$, they are not defined for $x \le 0$ and $y \le 0$. Therefore, it is necessary to specify that the path lies in the region where $x$ and $y$ are positive.

Work Step by Step

(a) Using $f\left( {x,y,z} \right) = z\ln \left( {xy} \right)$, we evaluate $\nabla f = \left( {\dfrac{{\partial f}}{{\partial x}},\dfrac{{\partial f}}{{\partial y}}} \right) = \left( {\dfrac{z}{{xy}}\cdot y,\dfrac{z}{{xy}}\cdot x,\ln \left( {xy} \right)} \right) = \left( {{x^{ - 1}}z,{y^{ - 1}}z,\ln \left( {xy} \right)} \right)$ Since ${\bf{F}}\left( {x,y,z} \right) = \left( {{x^{ - 1}}z,{y^{ - 1}}z,\ln \left( {xy} \right)} \right)$, so ${\bf{F}} = \nabla f$. (b) In part (a) we verified that ${\bf{F}} = \nabla f$. By definition ${\bf{F}}$ is conservative. Using ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t},{{\rm{e}}^{2t}},{t^2}} \right)$, the values $t=1$ and $t=3$ correspond to the points $P = \left( {{\rm{e}},{{\rm{e}}^2},1} \right)$ and $Q = \left( {{{\rm{e}}^3},{{\rm{e}}^6},9} \right)$, respectively. Thus, by Theorem 1, the line integral over any path for $1 \le t \le 3$ has the value $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( {{{\rm{e}}^3},{{\rm{e}}^6},9} \right) - f\left( {{\rm{e}},{{\rm{e}}^2},1} \right)$ Since $f\left( {x,y,z} \right) = z\ln \left( {xy} \right)$, so $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 9\cdot\ln \left( {{{\rm{e}}^9}} \right) - 1\cdot\ln \left( {{{\rm{e}}^3}} \right) = 78$ (c) Since ${\bf{F}}$ is conservative, the line integral over any path from $P = \left( {\frac{1}{2},4,2} \right)$ to $Q = \left( {2,2,3} \right)$ has the value $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( Q \right) - f\left( P \right) = f\left( {2,2,3} \right) - f\left( {\frac{1}{2},4,2} \right)$ Since $f\left( {x,y,z} \right) = z\ln \left( {xy} \right)$, so $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 3\cdot\ln \left( 4 \right) - 2\cdot\ln \left( 2 \right) = 6\ln 2 - 2\ln 2 = 4\ln 2$ (d) Because the definitions of ${\bf{F}}\left( {x,y,z} \right) = \left( {{x^{ - 1}}z,{y^{ - 1}}z,\ln \left( {xy} \right)} \right)$ and $f\left( {x,y,z} \right) = z\ln \left( {xy} \right)$ contain the logarithmic function $\ln \left( {xy} \right)$, they are not defined for $x \le 0$ and $y \le 0$. Therefore, it is necessary to specify that the path lies in the region where $x$ and $y$ are positive.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.