Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 17 - Line and Surface Integrals - 17.3 Conservative Vector Fields - Exercises - Page 945: 19

Answer

1. For the path ${{\bf{r}}_1} = \left( {t,t,0} \right)$ for $0 \le t \le 1$ $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 1$ $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( {{{\bf{r}}_1}\left( 1 \right)} \right) - f\left( {{{\bf{r}}_1}\left( 0 \right)} \right) = 1$ Both methods give the same answer. 2. For the path ${{\bf{r}}_2} = \left( {t,{t^2},0} \right)$ for $0 \le t \le 1$ $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = 1$ $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( {{{\bf{r}}_2}\left( 1 \right)} \right) - f\left( {{{\bf{r}}_2}\left( 0 \right)} \right) = 1$ Both methods give the same answer.

Work Step by Step

1. For the path ${{\bf{r}}_1} = \left( {t,t,0} \right)$ for $0 \le t \le 1$ So, we have $d{\bf{r}} = \left( {1,1,0} \right)dt$. a. determine $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ directly From $f = {x^2}y - z$ we get ${\bf{F}} = \nabla f = \left( {2xy,{x^2}, - 1} \right)$. So, $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{t = 0}^1 \left( {2xy,{x^2}, - 1} \right)\cdot{\rm{d}}{\bf{r}}$ $ = \mathop \smallint \limits_{t = 0}^1 \left( {2{t^2},{t^2}, - 1} \right)\cdot\left( {1,1,0} \right)dt$ $ = \mathop \smallint \limits_{t = 0}^1 3{t^2}dt = {t^3}|_0^1 = 1$ b. using Theorem 1, we get $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( {{{\bf{r}}_1}\left( 1 \right)} \right) - f\left( {{{\bf{r}}_1}\left( 0 \right)} \right) = f\left( {1,1,0} \right) - f\left( {0,0,0} \right) = 1$ So both methods give the same answer. 2. For the path ${{\bf{r}}_2} = \left( {t,{t^2},0} \right)$ for $0 \le t \le 1$ So, we have $d{\bf{r}} = \left( {1,2t,0} \right)dt$. a. determine $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}}$ directly $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = \mathop \smallint \limits_{t = 0}^1 \left( {2xy,{x^2}, - 1} \right)\cdot{\rm{d}}{\bf{r}}$ $ = \mathop \smallint \limits_{t = 0}^1 \left( {2{t^3},{t^2}, - 1} \right)\cdot\left( {1,2t,0} \right)dt$ $ = \mathop \smallint \limits_{t = 0}^1 4{t^3}dt = {t^4}|_0^1 = 1$ b. using Theorem 1, we get $\mathop \smallint \limits_C {\bf{F}}\cdot{\rm{d}}{\bf{r}} = f\left( {{{\bf{r}}_2}\left( 1 \right)} \right) - f\left( {{{\bf{r}}_2}\left( 0 \right)} \right) = f\left( {1,1,0} \right) - f\left( {0,0,0} \right) = 1$ So both methods give the same answer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.