Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 5

Answer

The total population is $1912$ people.

Work Step by Step

We have a population density of $\delta \left( {x,y} \right) = 100{{\rm{e}}^{ - 0.1y}}$ and the region within the sector $2\left| x \right| \le y \le 8$. Write the sector: $\left\{ {\begin{array}{*{20}{c}} {2x \le y \le 8}&{{\rm{for}{\ }}x \ge 0}\\ { - 2x \le y \le 8}&{{\rm{for}{\ }}x < 0} \end{array}} \right.$ We sketch the region ${\cal D}$ and notice that it is bounded below by $y=0$ and bounded above by the line $y=8$. Whereas, it is bounded left by the line $y=-2x$ and bounded right by the line $y=2x$. So, we can consider ${\cal D}$ as a horizontally simple region with the description: ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le y \le 8, - \frac{y}{2} \le x \le \frac{y}{2}} \right\}$ Using Eq. (1), the total population is given by ${\rm{total{\ }population}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A$ $ = \mathop \smallint \limits_{y = 0}^8 \mathop \smallint \limits_{x = - y/2}^{y/2} 100{{\rm{e}}^{ - 0.1y}}{\rm{d}}x{\rm{d}}y$ $ = 100\mathop \smallint \limits_{y = 0}^8 {{\rm{e}}^{ - 0.1y}}\left( {x|_{ - y/2}^{y/2}} \right){\rm{d}}y$ $ = 100\mathop \smallint \limits_{y = 0}^8 y{{\rm{e}}^{ - 0.1y}}{\rm{d}}y$ Write $u=y$ and $dv = {{\rm{e}}^{ - 0.1y}}dy$. So, $du = dy$ and $v = - 10{{\rm{e}}^{ - 0.1y}}$. Using Integration by Parts Formula (Section 8.1), $\smallint u{\rm{d}}v = uv - \smallint v{\rm{d}}u$ we get ${\rm{total{\ }population}} = 100\mathop \smallint \limits_{y = 0}^8 y{{\rm{e}}^{ - 0.1y}}{\rm{d}}y$ $ = 100\left( {\left( { - 10y{{\rm{e}}^{ - 0.1y}}} \right)|_0^8 + 10\mathop \smallint \limits_{y = 0}^8 {{\rm{e}}^{ - 0.1y}}{\rm{d}}y} \right)$ $ = 100\left( { - 80{{\rm{e}}^{ - 0.8}} - 100\left( {{{\rm{e}}^{ - 0.1y}}|_0^8} \right)} \right)$ $ = 100\left( { - 80{{\rm{e}}^{ - 0.8}} - 100\left( {{{\rm{e}}^{ - 0.8}} - 1} \right)} \right)$ $ = 100\left( { - 80{{\rm{e}}^{ - 0.8}} - 100{{\rm{e}}^{ - 0.8}} + 100} \right)$ $ = 100\left( {100 - 180{{\rm{e}}^{ - 0.8}}} \right) \simeq 1912.08$ So, the total population is $1912$ people.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.