Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.5 Applications of Multiple Integrals - Exercises - Page 890: 2

Answer

The total mass is $\frac{{15}}{{64}}$ kg.

Work Step by Step

We have a mass density of $\delta \left( {x,y} \right) = \frac{y}{x}$ and the region $1 \le x \le 4$, $0 \le y \le {x^{ - 1}}$. Using Eq. (1), the total mass is given by ${\rm{total{\ }mass}} = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 1}^4 \mathop \smallint \limits_{y = 0}^{{x^{ - 1}}} \frac{y}{x}{\rm{d}}y{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 1}^4 \left( {\left( {\frac{{{y^2}}}{x}} \right)|_0^{{x^{ - 1}}}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 1}^4 \left( {{x^{ - 3}}} \right){\rm{d}}x$ $ = - \frac{1}{4}\left( {{x^{ - 2}}|_1^4} \right) = - \frac{1}{4}\left( {\frac{1}{{16}} - 1} \right) = \frac{{15}}{{64}}$ The total mass is $\frac{{15}}{{64}}$ kg.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.