Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 43

Answer

Using the Integration by Parts Formula in Section 8.1, we verify Eq. (8): ${C_n} = \left( {\frac{{n - 1}}{n}} \right){C_{n - 2}}$.

Work Step by Step

Recall the definition: ${C_n} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta $. First, write $\smallint {\cos ^n}\theta {\rm{d}}\theta = \smallint \cos \theta {\cos ^{n - 1}}\theta {\rm{d}}\theta $ Since $\cos \theta {\rm{d}}\theta = {\rm{d}}\left( {\sin \theta } \right)$. So, $\smallint {\cos ^n}\theta {\rm{d}}\theta = \smallint {\cos ^{n - 1}}\theta {\rm{d}}\left( {\sin \theta } \right)$ Write $u = {\cos ^{n - 1}}\theta $ and $v = \sin \theta $. Using the Integration by Parts Formula in Section 8.1, we obtain $\smallint {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right) - \smallint sin\theta {\rm{d}}\left( {{{\cos }^{n - 1}}\theta } \right)$ Since ${\rm{d}}\left( {{{\cos }^{n - 1}}\theta } \right) = - \left( {n - 1} \right)\left( {\sin \theta } \right)\left( {{{\cos }^{n - 2}}\theta } \right){\rm{d}}\theta $. So, $\smallint {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right) + \left( {n - 1} \right)\smallint {\sin ^2}\theta {\cos ^{n - 2}}\theta {\rm{d}}\theta $ Using ${\sin ^2}\theta = 1 - {\cos ^2}\theta $, we get $\smallint {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right) + \left( {n - 1} \right)\left( {\smallint {{\cos }^{n - 2}}\theta {\rm{d}}\theta - \smallint {{\cos }^n}\theta {\rm{d}}\theta } \right)$ There is the term $\smallint {\cos ^n}\theta {\rm{d}}\theta $ on both sides, so $\left( {1 + n - 1} \right)\smallint {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right) + \left( {n - 1} \right)\smallint {\cos ^{n - 2}}\theta {\rm{d}}\theta $ $n\smallint {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right) + \left( {n - 1} \right)\smallint {\cos ^{n - 2}}\theta {\rm{d}}\theta $ Write the definite integral: $n\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta = \left( {{{\cos }^{n - 1}}\theta } \right)\left( {\sin \theta } \right)|_{ - \pi /2}^{\pi /2} + \left( {n - 1} \right)\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^{n - 2}}\theta {\rm{d}}\theta $ The first term on the right-hand side is zero, so $n\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta = \left( {n - 1} \right)\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^{n - 2}}\theta {\rm{d}}\theta $ $\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta = \left( {\frac{{n - 1}}{n}} \right)\mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^{n - 2}}\theta {\rm{d}}\theta $ By definition: ${C_n} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^n}\theta {\rm{d}}\theta $ and ${C_{n - 2}} = \mathop \smallint \limits_{\theta = - \pi /2}^{\pi /2} {\cos ^{n - 2}}\theta {\rm{d}}\theta $ Hence, Eq. (8): ${C_n} = \left( {\frac{{n - 1}}{n}} \right){C_{n - 2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.