Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.3 Triple Integrals - Exercises - Page 872: 32

Answer

(a) The volume of ${\cal W}$ as a triple integral in the order $dxdzdy$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - {y^2}} \mathop \smallint \limits_{x = - \sqrt y }^{\sqrt y } 1{\rm{d}}x{\rm{d}}z{\rm{d}}y = \frac{{16}}{{21}}$ (b) The volume of ${\cal W}$ as a triple integral in the order $dydzdx$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{z = 0}^{1 - {x^4}} \mathop \smallint \limits_{y = {x^2}}^{\sqrt {1 - z} } 1{\rm{d}}y{\rm{d}}z{\rm{d}}x = \frac{{16}}{{21}}$ The two answers agree.

Work Step by Step

Recall from Exercise 31: we have the region ${\cal W}$ bounded by $z = 1 - {y^2}$, $y = {x^2}$, and the plane $z=0$. (a) To calculate the volume $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V$ as a triple integral in the order $dxdzdy$, we project ${\cal W}$ onto the $yz$-plane to obtain the domain ${\cal T}$. On the $yz$-plane, ${\cal T}$ is bounded below by $z=0$ and bounded above by $z = 1 - {y^2}$. The left and right boundaries of ${\cal T}$ are $y=0$ and $y=1$, respectively. Thus, ${\cal T}$ is a vertically simple region given by ${\cal T} = \left\{ {\left( {y,z} \right)|0 \le y \le 1,0 \le z \le 1 - {y^2}} \right\}$ Referring to the figure attached, we see that ${\cal W}$ is located on both positive and negative $x$-axis. Using $y = {x^2}$, we obtain $x = \pm \sqrt y $. Thus, we can describe it as a $x$-simple region bounded below by $x = - \sqrt y $ and bounded above by $x = \sqrt y $. Thus, the region description of ${\cal W}$: ${\cal W} = \left\{ {\left( {x,y,z} \right)|0 \le y \le 1,0 \le z \le 1 - {y^2}, - \sqrt y \le x \le \sqrt y } \right\}$ The volume of ${\cal W}$ as a triple integral in the order $dxdzdy$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - {y^2}} \mathop \smallint \limits_{x = - \sqrt y }^{\sqrt y } 1{\rm{d}}x{\rm{d}}z{\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - {y^2}} \left( {x|_{ - \sqrt y }^{\sqrt y }} \right){\rm{d}}z{\rm{d}}y$ $ = 2\mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - {y^2}} \sqrt y {\rm{d}}z{\rm{d}}y$ $ = 2\mathop \smallint \limits_{y = 0}^1 \sqrt y \left( {z|_0^{1 - {y^2}}} \right){\rm{d}}y$ $ = 2\mathop \smallint \limits_{y = 0}^1 \sqrt y \left( {1 - {y^2}} \right){\rm{d}}y$ $ = 2\mathop \smallint \limits_{y = 0}^1 \left( {{y^{1/2}} - {y^{5/2}}} \right){\rm{d}}y$ $ = 2\left( {\frac{2}{3}{y^{3/2}} - \frac{2}{7}{y^{7/2}}} \right)|_0^1$ $ = 2\left( {\frac{2}{3} - \frac{2}{7}} \right) = \frac{{16}}{{21}}$ The volume of ${\cal W}$ as a triple integral in the order $dxdzdy$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{z = 0}^{1 - {y^2}} \mathop \smallint \limits_{x = - \sqrt y }^{\sqrt y } 1{\rm{d}}x{\rm{d}}z{\rm{d}}y = \frac{{16}}{{21}}$ (b) To calculate the volume $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V$ as a triple integral in the order $dydzdx$, we project ${\cal W}$ onto the $xz$-plane to obtain the domain ${\cal S}$. We need to find the boundary curve of ${\cal S}$. A point $P$ on this curve is the projection of a point $Q$ on the intersection of the two surfaces, namely $z = 1 - {y^2}$ and $y = {x^2}$. Since $Q$ lies in the intersection curve, we have $z = 1 - {y^2} = 1 - {x^4}$ Thus, the boundary curve of ${\cal S}$ is $z = 1 - {x^4}$. We see from the figure attached, we can describe ${\cal S}$ as a vertically simple region, where ${\cal S} = \left\{ {\left( {x,z} \right)| - 1 \le x \le 1,0 \le z \le 1 - {x^4}} \right\}$ We see that ${\cal W}$ is a $y$-simple region bounded below by $y = {x^2}$ and bounded above by $z = 1 - {y^2}$. Thus, ${\cal W}$ consists of all points lying between $y = {x^2}$ and $y = \sqrt {1 - z} $. Thus, the description of ${\cal W}$: ${\cal W} = \left\{ {\left( {x,y,z} \right)| - 1 \le x \le 1,0 \le z \le 1 - {x^4},{x^2} \le y \le \sqrt {1 - z} } \right\}$ The volume of ${\cal W}$ as a triple integral in the order $dydzdx$ is $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{z = 0}^{1 - {x^4}} \mathop \smallint \limits_{y = {x^2}}^{\sqrt {1 - z} } 1{\rm{d}}y{\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{z = 0}^{1 - {x^4}} \left( {y|_{{x^2}}^{\sqrt {1 - z} }} \right){\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{z = 0}^{1 - {x^4}} \left( {\sqrt {1 - z} - {x^2}} \right){\rm{d}}z{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {\left( { - \frac{2}{3}{{\left( {1 - z} \right)}^{3/2}} - {x^2}z} \right)|_0^{1 - {x^4}}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( { - \frac{2}{3}{x^6} - {x^2}\left( {1 - {x^4}} \right) + \frac{2}{3}} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {\frac{1}{3}{x^6} - {x^2} + \frac{2}{3}} \right){\rm{d}}x$ $ = \left( {\frac{1}{{21}}{x^7} - \frac{1}{3}{x^3} + \frac{2}{3}x} \right)|_{ - 1}^1$ $ = \frac{1}{{21}} - \frac{1}{3} + \frac{2}{3} + \frac{1}{{21}} - \frac{1}{3} + \frac{2}{3} = \frac{{16}}{{21}}$ The volume of ${\cal W}$ as a triple integral in the order $dydzdx$: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} 1{\rm{d}}V = \mathop \smallint \limits_{x = - 1}^1 \mathop \smallint \limits_{z = 0}^{1 - {x^4}} \mathop \smallint \limits_{y = {x^2}}^{\sqrt {1 - z} } 1{\rm{d}}y{\rm{d}}z{\rm{d}}x = \frac{{16}}{{21}}$ The two answers agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.