Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 60

Answer

Using Theorem 4, we prove that $\frac{4}{3} \le \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {{x^2} + {y^2}} \right){\rm{d}}A \le \frac{{20}}{3}$

Work Step by Step

We have the domain ${\cal D}$ bounded by $y = {x^2} + 1$ and $y=2$. We can consider ${\cal D}$ as a vertically simple region (please see the figure attached) whose description is given by ${\cal D} = \left\{ {\left( {x,y} \right)| - 1 \le x \le 1,{x^2} + 1 \le y \le 2} \right\}$ We notice that the integrand ${x^2} + {y^2}$ is the square distance ${d^2}$ from $\left( {x,y} \right) \in {\cal D}$ to the origin. From the figure attached we see that the minimum of ${d^2}$ occurs at $x=0$ and the maximum of ${d^2}$ occurs at $x=-1$ and $x=1$. Therefore, $1 \le {d^2} \le 5$. Thus, $1 \le {x^2} + {y^2} \le 5$ By part (b) of Theorem 4, $1\cdot Area\left( {\cal D} \right) \le \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {{x^2} + {y^2}} \right){\rm{d}}A \le 5\cdot Area\left( {\cal D} \right)$ Next, we evaluate the area of ${\cal D}$ as an iterated integral: $Area\left( {\cal D} \right) = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {\rm{d}}A = \mathop \smallint \limits_{x = - 1}^1 \left( {\mathop \smallint \limits_{y = {x^2} + 1}^2 {\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {y|_{{x^2} + 1}^2} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 1}^1 \left( {1 - {x^2}} \right){\rm{d}}x$ $ = \left( {\left( {x - \frac{1}{3}{x^3}} \right)|_{ - 1}^1} \right)$ $ = 1 - \frac{1}{3} + 1 - \frac{1}{3}$ $ = \frac{4}{3}$ Hence, $\frac{4}{3} \le \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {{x^2} + {y^2}} \right){\rm{d}}A \le \frac{{20}}{3}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.