Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 860: 55

Answer

The average value of the linear function $f\left( {x,y} \right) = mx + ny + p$ on the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$ is $p$.

Work Step by Step

The average value of $f\left( {x,y} \right)$ on a domain ${\cal D}$ is given by Eq. (8): $\bar f = \frac{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A}}{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} 1{\rm{d}}A}}$ So, the average value of the linear function $f\left( {x,y} \right) = mx + ny + p$ on the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$ is $\bar f = \frac{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} \left( {mx + ny + p} \right){\rm{d}}A}}{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} {\rm{d}}A}}$ Consider the numerator $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {mx + ny + p} \right){\rm{d}}A$. Since the ellipse is symmetric with respect to $x$- and $y$- axis, and if the integrands in the double integrals are odd functions, we conclude that the integrals are zeros. Therefore, we have $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} mx{\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} ny{\rm{d}}A = 0$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {mx + ny + p} \right){\rm{d}}A = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} p{\rm{d}}A$ Since $p$ is a constant, so $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {mx + ny + p} \right){\rm{d}}A = p\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {\rm{d}}A$ Therefore, $\bar f = \frac{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} \left( {mx + ny + p} \right){\rm{d}}A}}{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} {\rm{d}}A}} = \frac{{p\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} {\rm{d}}A}}{{\mathop \smallint \nolimits_{}^{} \mathop \smallint \nolimits_{\cal D}^{} {\rm{d}}A}} = p$ Hence, the average value of the linear function $f\left( {x,y} \right) = mx + ny + p$ on the ellipse ${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} \le 1$ is $p$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.