Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 3

Answer

1. Domain ${\cal D}$ as a vertically simple region: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - {x^2}} xy{\rm{d}}y{\rm{d}}x = \frac{1}{{12}}$ 2. Domain ${\cal D}$ as a horizontally simple region $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^{\sqrt {1 - y} } xy{\rm{d}}x{\rm{d}}y = \frac{1}{{12}}$. The two answers agree.

Work Step by Step

Method 1. ${\cal D}$ as a vertically simple region ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le x \le 1,0 \le y \le 1 - {x^2}} \right\}$ So, the integral of $f\left( {x,y} \right) = xy$ over ${\cal D}$ is $\mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - {x^2}} xy{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{x = 0}^1 \left( {\mathop \smallint \limits_{y = 0}^{1 - {x^2}} xy{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = 0}^1 x\left( {\frac{1}{2}{y^2}|_0^{1 - {x^2}}} \right){\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 x{\left( {1 - {x^2}} \right)^2}{\rm{d}}x$ $ = \frac{1}{2}\mathop \smallint \limits_{x = 0}^1 \left( {x - 2{x^3} + {x^5}} \right){\rm{d}}x$ $ = \frac{1}{2}\left( {\frac{1}{2}{x^2} - \frac{1}{2}{x^4} + \frac{1}{6}{x^6}} \right)|_0^1$ $ = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{2} + \frac{1}{6}} \right) = \frac{1}{{12}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^{1 - {x^2}} xy{\rm{d}}y{\rm{d}}x = \frac{1}{{12}}$. Method 2. ${\cal D}$ as a horizontally simple region We have $y = 1 - {x^2}$, so $x = \pm \sqrt {1 - y} $. Since the region is in the first quadrant, we choose $x = \sqrt {1 - y} $. So, ${\cal D} = \left\{ {\left( {x,y} \right)|0 \le y \le 1,0 \le x \le \sqrt {1 - y} } \right\}$ So, the integral of $f\left( {x,y} \right) = xy$ over ${\cal D}$ is $\mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^{\sqrt {1 - y} } xy{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{y = 0}^1 \left( {\mathop \smallint \limits_{x = 0}^{\sqrt {1 - y} } xy{\rm{d}}x} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^1 y\left( {\frac{1}{2}{x^2}|_0^{\sqrt {1 - y} }} \right){\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 y\left( {1 - y} \right){\rm{d}}y$ $ = \frac{1}{2}\mathop \smallint \limits_{y = 0}^1 \left( {y - {y^2}} \right){\rm{d}}y$ $ = \frac{1}{2}\left( {\frac{1}{2}{y^2} - \frac{1}{3}{y^3}} \right)|_0^1$ $ = \frac{1}{2}\left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{1}{{12}}$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} f\left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{y = 0}^1 \mathop \smallint \limits_{x = 0}^{\sqrt {1 - y} } xy{\rm{d}}x{\rm{d}}y = \frac{1}{{12}}$. The two answers agree.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.