Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.2 Double Integrals over More General Regions - Exercises - Page 858: 13

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {x + y} \right){\rm{d}}A = \frac{{16}}{3}$

Work Step by Step

We have the domain ${\cal D} = \left\{ {\left( {x,y} \right)|{x^2} + {y^2} \le 4,y \ge 0} \right\}$. Notice that this is the upper half of a disk of radius $2$. Since ${x^2} + {y^2} = 4$, so $y = \sqrt {4 - {x^2}} $. We can consider the domain as a vertically simple region. So, we re-write the description as ${\cal D} = \left\{ {\left( {x,y} \right)| - 2 \le x \le 2,0 \le y \le \sqrt {4 - {x^2}} } \right\}$ Thus, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {x + y} \right){\rm{d}}A = \mathop \smallint \limits_{x = - 2}^2 \mathop \smallint \limits_{y = 0}^{\sqrt {4 - {x^2}} } \left( {x + y} \right){\rm{d}}y{\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 2}^2 \left( {\mathop \smallint \limits_{y = 0}^{\sqrt {4 - {x^2}} } x{\rm{d}}y + \mathop \smallint \limits_{y = 0}^{\sqrt {4 - {x^2}} } y{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 2}^2 x\left( {\mathop \smallint \limits_{y = 0}^{\sqrt {4 - {x^2}} } {\rm{d}}y} \right){\rm{d}}x + \mathop \smallint \limits_{x = - 2}^2 \left( {\mathop \smallint \limits_{y = 0}^{\sqrt {4 - {x^2}} } y{\rm{d}}y} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 2}^2 x\sqrt {4 - {x^2}} {\rm{d}}x + \mathop \smallint \limits_{x = - 2}^2 \left( {\frac{1}{2}{y^2}|_0^{\sqrt {4 - {x^2}} }} \right){\rm{d}}x$ $ = \mathop \smallint \limits_{x = - 2}^2 x\sqrt {4 - {x^2}} {\rm{d}}x + \frac{1}{2}\mathop \smallint \limits_{x = - 2}^2 \left( {4 - {x^2}} \right){\rm{d}}x$ Notice that the antiderivative of $x\sqrt {4 - {x^2}} $ is $ - \frac{1}{3}{\left( {4 - {x^2}} \right)^{3/2}}$ because $\frac{d}{{dx}}\left( { - \frac{1}{3}{{\left( {4 - {x^2}} \right)}^{3/2}}} \right) = x\sqrt {4 - {x^2}} $ So, the double integral above becomes $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \left( {x + y} \right){\rm{d}}A = - \frac{1}{3}{\left( {4 - {x^2}} \right)^{3/2}}|_{ - 2}^2 + \frac{1}{2}\left( {4x - \frac{1}{3}{x^3}} \right)|_{ - 2}^2$ $ = 0 + \frac{1}{2}\left( {8 - \frac{8}{3} + 8 - \frac{8}{3}} \right)$ $ = \frac{{16}}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.