Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - 16.1 Integration in Two Variables - Exercises - Page 847: 47

Answer

$\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \frac{y}{{1 + xy}}{\rm{d}}y{\rm{d}}x \simeq 0.386294$

Work Step by Step

We use Fubini's Theorem to change the order of integration and re-write the integral: $I = \mathop \smallint \limits_{x = 0}^1 \mathop \smallint \limits_{y = 0}^1 \frac{y}{{1 + xy}}{\rm{d}}y{\rm{d}}x = \mathop \smallint \limits_{y = 0}^1 \left( {\mathop \smallint \limits_{x = 0}^1 \frac{y}{{1 + xy}}{\rm{d}}x} \right){\rm{d}}y$ We evaluate first the inner integral with respect to $x$. $S\left( y \right) = \mathop \smallint \limits_{x = 0}^1 \frac{y}{{1 + xy}}{\rm{d}}x$ The antiderivative of $\frac{y}{{1 + xy}}$ with respect to $x$ is $\ln \left( {1 + xy} \right)$ because $\frac{\partial }{{\partial x}}\left( {\ln \left( {1 + xy} \right)} \right) = \frac{y}{{1 + xy}}$ So, $S\left( y \right) = \mathop \smallint \limits_{x = 0}^1 \frac{y}{{1 + xy}}{\rm{d}}x = \ln \left( {1 + xy} \right)|_{x = 0}^1$ $ = \ln \left( {1 + y} \right)$ Thus, $I = \mathop \smallint \limits_{y = 0}^1 \left( {\mathop \smallint \limits_{x = 0}^1 \frac{y}{{1 + xy}}{\rm{d}}x} \right){\rm{d}}y$ $ = \mathop \smallint \limits_{y = 0}^1 \ln \left( {1 + y} \right){\rm{d}}y$ We need an antiderivative of $\ln \left( {1 + y} \right)$ as a function of $y$. We can use $y\ln \left( {1 + y} \right) + \ln \left( {1 + y} \right) - y$ because $\frac{d}{{dy}}\left( {y\ln \left( {1 + y} \right) + \ln \left( {1 + y} \right) - y} \right) = \ln \left( {1 + y} \right) + \frac{y}{{1 + y}} + \frac{1}{{1 + y}} - 1$ $ = \ln \left( {1 + y} \right) + \frac{{y + 1}}{{1 + y}} - 1$ $ = \ln \left( {1 + y} \right)$ So, $I = \left( {y\ln \left( {1 + y} \right) + \ln \left( {1 + y} \right) - y} \right)|_0^1$ $ = \ln 2 + \ln 2 - 1$ $ = 2\ln 2 - 1$ Therefore, $\mathop \smallint \limits_0^1 \mathop \smallint \limits_0^1 \frac{y}{{1 + xy}}{\rm{d}}y{\rm{d}}x = 2\ln 2 - 1 \simeq 0.386294$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.