Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 60

Answer

The minimum value of $f\left( {x,y,z} \right) = x - z$ is $ - \sqrt 2 $ and the maximum value is $\sqrt 2 $ on the intersection of the cylinders ${x^2} + {y^2} = 1$ and ${x^2} + {z^2} = 1$.

Work Step by Step

Our task is to find the extreme values of the function $f\left( {x,y,z} \right) = x - z$ subject to the two constraints $g\left( {x,y,z} \right) = {x^2} + {y^2} - 1 = 0$ and $h\left( {x,y,z} \right) = {x^2} + {z^2} - 1 = 0$. The Lagrange condition is $\nabla f = \lambda \nabla g + \mu \nabla h$ $\left( {1,0, - 1} \right) = \lambda \left( {2x,2y,0} \right) + \mu \left( {2x,0,2z} \right)$ From the Lagrange condition we obtain three equations: (1) ${\ \ \ \ }$ $1 = 2\lambda x + 2\mu x$, ${\ \ }$ $0 = 2\lambda y$, ${\ \ }$ $ - 1 = 2\mu z$ The third equation of (1) implies that $\mu \ne 0$ and $z \ne 0$. So, $\mu = - \frac{1}{{2z}}$. The second equation of (1) yields the following cases: Case 1. $\lambda = 0$ Substituting $\lambda = 0$ in the first equation of (1) gives $1 = 2\mu x$ So, $\mu = \frac{1}{{2x}}$. Using our previous results we get $\mu = \frac{1}{{2x}} = - \frac{1}{{2z}}$. So, $z=-x$. Substituting $z=-x$ in the constraint $h\left( {x,y,z} \right) = {x^2} + {z^2} - 1 = 0$ gives $2{x^2} = 1$ So, $x = \pm \frac{1}{{\sqrt 2 }}$. Substituting $x = \pm \frac{1}{{\sqrt 2 }}$ in the constraint $g\left( {x,y,z} \right) = {x^2} + {y^2} - 1 = 0$ gives $\frac{1}{2} + {y^2} - 1 = 0$ So, $y = \pm \frac{1}{{\sqrt 2 }}$. Using $z=-x$, the critical points are $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)$, $\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)$, $\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$, $\left( { - \frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$. Case 2. $y=0$ Substituting $y=0$ in the constraint $g\left( {x,y,z} \right) = {x^2} + {y^2} - 1 = 0$ gives ${x^2} = 1$. So, $x = \pm 1$. Substituting $x = \pm 1$ in the constraint $h\left( {x,y,z} \right) = {x^2} + {z^2} - 1 = 0$ gives $z=0$. So, the critical points are $\left( {1,0,0} \right)$ and $\left( { - 1,0,0} \right)$. The extreme values corresponds to these critical points are listed in the following table $\begin{array}{*{20}{c}} {{\rm{Critical{\ }point}}}&{f\left( {x,y,z} \right)}\\ {\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)}&{\sqrt 2 }\\ {\left( {\frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }}} \right)}&{\sqrt 2 }\\ {\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)}&{ - \sqrt 2 }\\ {\left( { - \frac{1}{{\sqrt 2 }}, - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)}&{ - \sqrt 2 }\\ {\left( {1,0,0} \right)}&1\\ {\left( { - 1,0,0} \right)}&{ - 1} \end{array}$ From these results we conclude that the minimum value of $f\left( {x,y,z} \right) = x - z$ is $ - \sqrt 2 $ and the maximum value is $\sqrt 2 $ on the intersection of the cylinders ${x^2} + {y^2} = 1$ and ${x^2} + {z^2} = 1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.