Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - Chapter Review Exercises - Page 836: 47

Answer

$\begin{array}{*{20}{c}} {{\bf{Critical}}}&{}\\ {{\bf{Point}}}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&{{\rm{saddle{\ }point}}}\\ {\left( {1,1} \right)}&{{\rm{local{\ }minimum}}}\\ {\left( { - 1, - 1} \right)}&{{\rm{local{\ }minimum}}} \end{array}$

Work Step by Step

We have $f\left( {x,y} \right) = {x^4} - 4xy + 2{y^2}$. The partial derivatives are ${f_x} = 4{x^3} - 4y$, ${\ \ \ }$ ${f_y} = 4y - 4x$ To find the critical points we solve the equations ${f_x} = 0$ and ${f_y} = 0$: ${f_x} = 4{x^3} - 4y = 0$ $y = {x^3}$ ${f_y} = 4y - 4x = 0$ $y = x$ From these equations we obtain $x = {x^3}$. ${x^3} - x = 0$ $x\left( {{x^2} - 1} \right) = 0$ $x = 0$, ${\ \ \ \ }$ $x = \pm 1$ Using $y = x$, the critical points are $\left( {0,0} \right)$, $\left( {1,1} \right)$ and $\left( { - 1, - 1} \right)$. The Second Derivative Test: We evaluate the second partial derivatives: ${f_{xx}} = 12{x^2}$, ${\ \ \ }$ ${f_{yy}} = 4$, ${\ \ \ }$ ${f_{xy}} = - 4$ Using the Second Derivative Test, we determine the nature of the critical points and list the results in the following table: $\begin{array}{*{20}{c}} {{\bf{Critical}}}&{{f_{xx}}}&{{f_{yy}}}&{{f_{xy}}}&{{\bf{Discriminant}}}&{}\\ {{\bf{Point}}}&{12{x^2}}&4&{ - 4}&{D = {f_{xx}}{f_{yy}} - {f_{xy}}^2}&{{\bf{Type}}}\\ {\left( {0,0} \right)}&0&4&{ - 4}&{ - 16}&{{\rm{saddle{\ }point}}}\\ {\left( {1,1} \right)}&{12}&4&{ - 4}&{32}&{{\rm{local{\ }minimum}}}\\ {\left( { - 1, - 1} \right)}&{12}&4&{ - 4}&{32}&{{\rm{local{\ }minimum}}} \end{array}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.