Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 802: 59

Answer

(a) $Q = \left( {34,18,0} \right)$ (b) ${\bf{r}}\left( t \right) = \left( {2 + \frac{{32}}{{\sqrt {21} }}t,2 + \frac{{16}}{{\sqrt {21} }}t,8 - \frac{8}{{\sqrt {21} }}t} \right)$, ${\ \ }$ for $t>0$ Time it will take to reach $Q$: $t \simeq 4.58$ seconds

Work Step by Step

(a) From Exercise 58 we obtain the normal vector ${\bf{n}}$ to the surface: ${\bf{n}} = \left( {\frac{4}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}, - \frac{1}{{\sqrt {21} }}} \right)$ The parametrization of the line starting from $P = \left( {2,2,8} \right)$ in the direction of ${\bf{n}}$ can be written as ${\bf{r}}\left( t \right) = \left( {2,2,8} \right) + \left( {\frac{4}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}, - \frac{1}{{\sqrt {21} }}} \right)t$, ${\ \ }$ for $t>0$ ${\bf{r}}\left( t \right) = \left( {2 + \frac{4}{{\sqrt {21} }}t,2 + \frac{2}{{\sqrt {21} }}t,8 - \frac{1}{{\sqrt {21} }}t} \right)$ A particle traveling in the path of the line will pass the point $Q$ on the $xy$-plane if the $z$-component of ${\bf{r}}\left( t \right)$ is equal to zero. Thus, $8 - \frac{1}{{\sqrt {21} }}{t_Q} = 0$ ${t_Q} = 8\sqrt {21} $ Substituting ${t_Q}$ in ${\bf{r}}\left( t \right)$ gives the point $Q$: ${\bf{r}}\left( {8\sqrt {21} } \right) = \left( {2 + \frac{4}{{\sqrt {21} }}\cdot8\sqrt {21} ,2 + \frac{2}{{\sqrt {21} }}\cdot8\sqrt {21} ,8 - \frac{1}{{\sqrt {21} }}\cdot8\sqrt {21} } \right)$ ${\bf{r}}\left( {8\sqrt {21} } \right) = \left( {34,18,0} \right)$ So, $Q = \left( {34,18,0} \right)$. (b) We are given the constant speed of the particle $8$ cm/s. So, in this case, the direction vector of the path is ${\bf{v}} = 8{\bf{n}}$, where ${\bf{n}} = \left( {\frac{4}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}, - \frac{1}{{\sqrt {21} }}} \right)$. The path ${\bf{r}}\left( t \right)$ of the particle becomes ${\bf{r}}\left( t \right) = \left( {2,2,8} \right) + 8\left( {\frac{4}{{\sqrt {21} }},\frac{2}{{\sqrt {21} }}, - \frac{1}{{\sqrt {21} }}} \right)t$, ${\ \ }$ for $t>0$ ${\bf{r}}\left( t \right) = \left( {2 + \frac{{32}}{{\sqrt {21} }}t,2 + \frac{{16}}{{\sqrt {21} }}t,8 - \frac{8}{{\sqrt {21} }}t} \right)$ The distance from $P$ to $Q$ is $s = ||PQ|| = \sqrt {{{\left( {34 - 2} \right)}^2} + {{\left( {18 - 2} \right)}^2} + {{\left( {0 - 8} \right)}^2}} = 8\sqrt {21} $ So, the time it takes for the particle to reach $Q$ is $t = \frac{{8\sqrt {21} }}{8} = \sqrt {21} \simeq 4.58$ seconds
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.