Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.5 The Gradient and Directional Derivatives - Exercises - Page 801: 18

Answer

At $t=1$, $\frac{d}{{dt}}g\left( {{\bf{r}}\left( 1 \right)} \right) = 6$.

Work Step by Step

We are given $g\left( {x,y,z} \right) = xy{{\rm{e}}^z}$ and ${\bf{r}}\left( t \right) = \left( {{t^2},{t^3},t - 1} \right)$. So, $\nabla g = \left( {y{{\rm{e}}^z},x{{\rm{e}}^z},xy{{\rm{e}}^z}} \right)$, ${\ \ \ }$ $\nabla {g_{{\bf{r}}\left( t \right)}} = {{\rm{e}}^{t - 1}}\left( {{t^3},{t^2},{t^5}} \right)$ ${\bf{r}}'\left( t \right) = \left( {2t,3{t^2},1} \right)$ Using the Chain Rule for Paths we have $\frac{d}{{dt}}g\left( {{\bf{r}}\left( t \right)} \right) = \nabla {g_{{\bf{r}}\left( t \right)}}\cdot{\bf{r}}'\left( t \right)$ $\frac{d}{{dt}}g\left( {{\bf{r}}\left( t \right)} \right) = {{\rm{e}}^{t - 1}}\left( {{t^3},{t^2},{t^5}} \right)\cdot\left( {2t,3{t^2},1} \right)$ $ = {{\rm{e}}^{t - 1}}\left( {2{t^4} + 3{t^4} + {t^5}} \right)$ $ = {{\rm{e}}^{t - 1}}\left( {5{t^4} + {t^5}} \right)$ At $t=1$, $\frac{d}{{dt}}g\left( {{\bf{r}}\left( 1 \right)} \right) = 6$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.