Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 15 - Differentiation in Several Variables - 15.2 Limits and Continuity in Several Variables - Exercises - Page 772: 37

Answer

$$0$$

Work Step by Step

Given $$\lim _{(x, y) \rightarrow(0,0)} \tan \left(x^{2}+y^{2}\right) \tan ^{-1}\left(\frac{1}{x^{2}+y^{2}}\right) $$ Since \begin{align*} -\frac{\pi}{2} &\leq \tan ^{-1}\left(\frac{1}{x^{2}+y^{2}}\right) \leq \frac{\pi}{2}\\ -\frac{\pi}{2} \cdot \tan \left(x^{2}+y^{2}\right)& \leq \tan \left(x^{2}+y^{2}\right) \cdot\left(\frac{1}{x^{2}+y^{2}}\right) \leq \frac{\pi}{2} \tan \left(x^{2}+y^{2}\right) \end{align*} Then by using the Squeeze Theorem $$\lim _{(x, y) \rightarrow(0,0)} -\frac{\pi}{2} \cdot \tan \left(x^{2}+y^{2}\right) \leq \lim _{(x, y) \rightarrow(0,0)} \tan \left(x^{2}+y^{2}\right) \cdot\left(\frac{1}{x^{2}+y^{2}}\right) \leq\lim _{(x, y) \rightarrow(0,0)} \frac{\pi}{2} \tan \left(x^{2}+y^{2}\right) $$ Then $$0 \leq \lim _{(x, y) \rightarrow(0,0)} \tan \left(x^{2}+y^{2}\right) \cdot\left(\frac{1}{x^{2}+y^{2}}\right) \leq 0 $$ Hence $$ \lim _{(x, y) \rightarrow(0,0)} \tan \left(x^{2}+y^{2}\right) \cdot\left(\frac{1}{x^{2}+y^{2}}\right)=0 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.