Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 14 - Calculus of Vector-Valued Functions - 14.2 Calculus of Vector-Valued Functions - Exercises - Page 721: 63

Answer

The angle $\psi$ between the position vector and the tangent vector is constant. $\psi \simeq 75.964^\circ $

Work Step by Step

Recall that the derivative vector ${\bf{r}}'\left( {{t_0}} \right)$ points in the direction tangent to the path traced by ${\bf{r}}\left( t \right)$ at $t = {t_0}$. For the curve ${\bf{r}}\left( t \right) = \left( {{{\rm{e}}^t}\cos 4t,{{\rm{e}}^t}\sin 4t} \right)$ we get ${\bf{r}}'\left( t \right) = \left( {{{\rm{e}}^t}\cos 4t - 4{{\rm{e}}^t}\sin 4t,{{\rm{e}}^t}\sin 4t + 4{{\rm{e}}^t}\cos 4t} \right)$ Thus, the tangent vector is ${\bf{r}}'\left( t \right) = {{\rm{e}}^t}\left( {\cos 4t - 4\sin 4t,\sin 4t + 4\cos 4t} \right)$ Let $\psi$ denote the angle between the position vector and the tangent vector. By Theorem 2 of Section 13.3, we obtain $\cos \psi = \frac{{{\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right)}}{{||{\bf{r}}\left( t \right)||||{\bf{r}}'\left( t \right)||}}$ 1. Evaluate ${\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right)$ ${\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right) = {{\rm{e}}^{2t}}\left( {\cos 4t,\sin 4t} \right)\cdot$ $\left( {\cos 4t - 4\sin 4t,\sin 4t + 4\cos 4t} \right)$ ${\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right) = {{\rm{e}}^{2t}}[\cos 4t\left( {\cos 4t - 4\sin 4t} \right)$ $ + \sin 4t\left( {\sin 4t + 4\cos 4t} \right)]$ ${\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right) = {{\rm{e}}^{2t}}[{\cos ^2}4t - 4\cos 4t\sin 4t$ $ + {\sin ^2}4t + 4\sin 4t\cos 4t)]$ ${\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right) = {{\rm{e}}^{2t}}$ 2. Evaluate $||{\bf{r}}\left( t \right)|{|^2}$ $||{\bf{r}}\left( t \right)|{|^2} = {\bf{r}}\left( t \right)\cdot{\bf{r}}\left( t \right)$ $||{\bf{r}}\left( t \right)|{|^2} = \left( {{{\rm{e}}^t}\cos 4t,{{\rm{e}}^t}\sin 4t} \right)\cdot$ $\left( {{{\rm{e}}^t}\cos 4t,{{\rm{e}}^t}\sin 4t} \right)$ $||{\bf{r}}\left( t \right)|{|^2} = {{\rm{e}}^{2t}}\left( {{{\cos }^2}4t + {{\sin }^2}4t} \right) = {{\rm{e}}^{2t}}$ So, $||{\bf{r}}\left( t \right)|| = {{\rm{e}}^t}$. 3. Evaluate $||{\rm{r}}'\left( t \right)|{|^2}$ $||{\rm{r}}'\left( t \right)|{|^2} = {{\rm{e}}^t}\left( {\cos 4t - 4\sin 4t,\sin 4t + 4\cos 4t} \right)\cdot$ ${{\rm{e}}^t}\left( {\cos 4t - 4\sin 4t,\sin 4t + 4\cos 4t} \right)$ $||{\rm{r}}'\left( t \right)|{|^2} = {{\rm{e}}^{2t}}\left[ {{{\left( {\cos 4t - 4\sin 4t} \right)}^2} + {{\left( {\sin 4t + 4\cos 4t} \right)}^2}} \right]$ $||{\rm{r}}'\left( t \right)|{|^2} = {{\rm{e}}^{2t}}[{\cos ^2}4t - 8\cos 4t\sin 4t + 16{\sin ^2}4t$ $ + {\sin ^2}4t + 8\sin 4t\cos 4t + 16{\cos ^2}4t]$ $||{\rm{r}}'\left( t \right)|{|^2} = {{\rm{e}}^{2t}}\left[ {1 + 16} \right] = 17{{\rm{e}}^{2t}}$ So, $||{\rm{r}}'\left( t \right)|| = \sqrt {17} {{\rm{e}}^t}$. Substituting the results obtained above in $\cos \psi $ gives $\cos \psi = \frac{{{\bf{r}}\left( t \right)\cdot{\bf{r}}'\left( t \right)}}{{||{\bf{r}}\left( t \right)||||{\bf{r}}'\left( t \right)||}}$ $\cos \psi = \frac{{{{\rm{e}}^{2t}}}}{{\left( {{{\rm{e}}^t}} \right)\left( {\sqrt {17} {{\rm{e}}^t}} \right)}} = \frac{1}{{\sqrt {17} }}$ $\psi = {\cos ^{ - 1}}\left( {\frac{1}{{\sqrt {17} }}} \right) \simeq 75.964^\circ $ Hence, the angle between the position vector and the tangent vector is constant.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.