Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 639: 40

Answer

If ${f_1}\left( \theta \right) = - {f_2}\left( {\theta + \pi } \right)$, then the two polar equations represent the same points in rectangular coordinates. Therefore, $r = {f_1}\left( \theta \right)$ and $r = {f_2}\left( \theta \right)$ define the same curves in polar coordinates. Using this result, therefore $r = {f_1}\left( \theta \right) = \frac{{de}}{{1 - e\cos \theta }}$ and $r = {f_2}\left( \theta \right) = \frac{{ - de}}{{1 + e\cos \theta }}$ define the same conic section.

Work Step by Step

Case 1. Consider the polar equation $r = {f_1}\left( \theta \right)$. In rectangular coordinates, we have (1) ${\ \ \ }$ $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = {f_1}\left( \theta \right)\left( {\cos \theta ,\sin \theta } \right)$ Case 2. Consider the polar equation $r = {f_2}\left( \theta \right)$. In rectangular coordinates, we have $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = {f_2}\left( \theta \right)\left( {\cos \theta ,\sin \theta } \right)$ However, shifting $\theta$ by $\pi$ we get ${f_2}\left( {\theta + \pi } \right)\left( {\cos \left( {\theta + \pi } \right),\sin \left( {\theta + \pi } \right)} \right)$ also defines the same point in polar coordinates. Thus, $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = {f_2}\left( \theta \right)\left( {\cos \theta ,\sin \theta } \right)$ $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = {f_2}\left( {\theta + \pi } \right)\left( {\cos \left( {\theta + \pi } \right),\sin \left( {\theta + \pi } \right)} \right)$ $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = {f_2}\left( {\theta + \pi } \right)\left( { - \cos \theta , - \sin \theta } \right)$ (2) ${\ \ \ }$ $\left( {x,y} \right) = \left( {r\cos \theta ,r\sin \theta } \right) = - {f_2}\left( {\theta + \pi } \right)\left( {\cos \theta ,\sin \theta } \right)$ If ${f_1}\left( \theta \right) = - {f_2}\left( {\theta + \pi } \right)$, then equations (1) and (2) represent the same points in rectangular coordinates. Therefore, $r = {f_1}\left( \theta \right)$ and $r = {f_2}\left( \theta \right)$ define the same curves in polar coordinates. Case 3. Consider the conic section: $r = \frac{{de}}{{1 - e\cos \theta }}$. Write $r = {f_1}\left( \theta \right) = \frac{{de}}{{1 - e\cos \theta }}$. Suppose ${f_1}\left( \theta \right) = - {f_2}\left( {\theta + \pi } \right)$. Then $r = - {f_2}\left( {\theta + \pi } \right) = \frac{{de}}{{1 - e\cos \theta }}$ $r = {f_2}\left( {\theta + \pi } \right) = - \frac{{de}}{{1 - e\cos \theta }}$ Shifting $\theta$ by $ - \pi $, we get $r = {f_2}\left( \theta \right) = - \frac{{de}}{{1 - e\cos \left( {\theta - \pi } \right)}} = - \frac{{de}}{{1 + e\cos \theta }}$ $r = {f_2}\left( \theta \right) = \frac{{ - de}}{{1 + e\cos \theta }}$. Using previous results, therefore $r = {f_1}\left( \theta \right) = \frac{{de}}{{1 - e\cos \theta }}$ and $r = {f_2}\left( \theta \right) = \frac{{ - de}}{{1 + e\cos \theta }}$ define the same conic section.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.