Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - Chapter Review Exercises - Page 639: 36

Answer

shaded area $ = \frac{{5\pi }}{8} - 1$

Work Step by Step

First, we find the intersection of the unit circle $r=1$ and the curve $r = 1 + \cos 2\theta $ by solving the equation $r = 1 = 1 + \cos 2\theta $ $\cos 2\theta = 0$ The solutions are $\theta = \pm \frac{\pi }{4} + \pi n$, for $n = 0, \pm 1, \pm 2, \pm 3,...$ For our purpose we choose the solution in the first quadrant, that is, $\theta = \frac{\pi }{4}$. Let $A$ denote the shaded area in the first quadrant. From Figure 3 we see that for the first quadrant, the area $A$ is the area of the curve $r = 1 + \cos 2\theta $ minus the area between the unit circle and the curve $r = 1 + \cos 2\theta $. So, $A = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} {\left( {1 + \cos 2\theta } \right)^2}{\rm{d}}\theta - \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /4} \left( {{{\left( {1 + \cos 2\theta } \right)}^2} - {1^2}} \right){\rm{d}}\theta $ $A = \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /2} {\left( {1 + \cos 2\theta } \right)^2}{\rm{d}}\theta + \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /4}^0 {\left( {1 + \cos 2\theta } \right)^2}{\rm{d}}\theta + \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /4} {\rm{d}}\theta $ $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /4}^{\pi /2} {\left( {1 + \cos 2\theta } \right)^2}{\rm{d}}\theta + \frac{1}{2}\cdot\mathop \smallint \limits_0^{\pi /4} {\rm{d}}\theta $ $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /4}^{\pi /2} \left( {1 + 2\cos 2\theta + {{\cos }^2}2\theta } \right){\rm{d}}\theta + \frac{\pi }{8}$ Since ${\cos ^2}2\theta = \frac{1}{2}\left( {1 + \cos 4\theta } \right)$, the integral becomes $A = \frac{1}{2}\cdot\mathop \smallint \limits_{\pi /4}^{\pi /2} \left( {1 + 2\cos 2\theta + \frac{1}{2}\left( {1 + \cos 4\theta } \right)} \right){\rm{d}}\theta + \frac{\pi }{8}$ $A = \frac{1}{2}\left( {\frac{3}{2}\theta + \sin 2\theta + \frac{1}{8}\sin 4\theta } \right)|_{\pi /4}^{\pi /2} + \frac{\pi }{8}$ $A = \frac{1}{2}\left( {\frac{{3\pi }}{4} - \frac{{3\pi }}{8} - 1} \right) + \frac{\pi }{8} = \frac{{5\pi }}{{16}} - \frac{1}{2}$ By symmetry, the total shaded area is twice the area $A$. So, shaded area $ = \frac{{5\pi }}{8} - 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.