Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.2 Arc Length and Speed - Exercises - Page 611: 36

Answer

The surface area is $S \simeq 28.8472$.

Work Step by Step

We have $x\left( t \right) = t$, ${\ \ \ }$ $x'\left( t \right) = 1$, $y\left( t \right) = \sin t$, ${\ \ \ }$ $y'\left( t \right) = \cos t$. Note that the curve is a sine curve: $y=\sin x$. By symmetry the surface area obtained by rotating $c\left( t \right)$ about the $x$-axis for $0 \le t \le 2\pi $ is twice the surface area for $0 \le t \le \pi $. Thus, by Eq. (4) of Theorem 3, the surface area is $S = 4\pi \mathop \smallint \limits_0^\pi \sin t\sqrt {1 + {{\cos }^2}t} {\rm{d}}t$ Write $u=\cos t$. So, $du = - \sin tdt$. Thus, the integral becomes $S = - 4\pi \mathop \smallint \limits_1^{ - 1} \sqrt {1 + {u^2}} {\rm{d}}u$. Let $u = \sinh v$. So, $du = \cosh vdv$. Since ${\cosh ^2}v = 1 + {\sinh ^2}v$, so $\cosh v = \sqrt {1 + {{\sinh }^2}v} $. Thus, $S = - 4\pi \mathop \smallint \limits_{{{\sinh }^{ - 1}}1}^{{{\sinh }^{ - 1}}\left( { - 1} \right)} {\cosh ^2}v{\rm{d}}v$ Using the identity given on page 412: ${\cosh ^2}v = \frac{1}{2}\left( {\cosh 2v + 1} \right)$, we get $S = - 2\pi \mathop \smallint \limits_{{{\sinh }^{ - 1}}1}^{{{\sinh }^{ - 1}}\left( { - 1} \right)} \left( {\cosh 2v + 1} \right){\rm{d}}v$ $S = - 2\pi \left( {\frac{1}{2}\sinh 2v + v} \right)|_{{{\sinh }^{ - 1}}1}^{{{\sinh }^{ - 1}}\left( { - 1} \right)}$ $S = - 2\pi \left( {\frac{1}{2}\sinh \left( {2{{\sinh }^{ - 1}}\left( { - 1} \right)} \right) - \frac{1}{2}\sinh \left( {2{{\sinh }^{ - 1}}1} \right) + {{\sinh }^{ - 1}}\left( { - 1} \right) - {{\sinh }^{ - 1}}1} \right)$ $S \simeq 28.8472$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.