Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.2 Arc Length and Speed - Exercises - Page 611: 24

Answer

$s = \sqrt 2 \left( {{{\rm{e}}^b} - {{\rm{e}}^a}} \right)$

Work Step by Step

We have $x\left( t \right) = {{\rm{e}}^t}\cos t$, ${\ \ \ }$ $x'\left( t \right) = {{\rm{e}}^t}\cos t - {{\rm{e}}^t}\sin t$, $y\left( t \right) = {{\rm{e}}^t}\sin t$, ${\ \ \ }$ $y'\left( t \right) = {{\rm{e}}^t}\sin t + {{\rm{e}}^t}\cos t$. Let $a \le t \le b$ be a definite interval. Using Eq. (3) of Theorem 1, the arc length is $s = \mathop \smallint \limits_a^b \sqrt {{{\left( {{{\rm{e}}^t}\cos t - {{\rm{e}}^t}\sin t} \right)}^2} + {{\left( {{{\rm{e}}^t}\sin t + {{\rm{e}}^t}\cos t} \right)}^2}} {\rm{d}}t$ $ = \mathop \smallint \limits_a^b \sqrt {{{\rm{e}}^{2t}}{{\cos }^2}t - 2{{\rm{e}}^{2t}}\cos t\sin t + {{\rm{e}}^{2t}}{{\sin }^2}t + {{\rm{e}}^{2t}}{{\sin }^2}t + 2{{\rm{e}}^{2t}}\sin t\cos t + {{\rm{e}}^{2t}}{{\cos }^2}t} {\rm{d}}t$ $ = \mathop \smallint \limits_a^b \sqrt {2{{\rm{e}}^{2t}}} {\rm{d}}t = \sqrt 2 \mathop \smallint \limits_a^b {{\rm{e}}^t}{\rm{d}}t$ So, $s = \sqrt 2 {{\rm{e}}^t}|_a^b = \sqrt 2 \left( {{{\rm{e}}^b} - {{\rm{e}}^a}} \right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.