Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 86

Answer

Eq. (13) cannot be used to evaluate $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $s=1$.

Work Step by Step

We have $x'\left( s \right) = 1 - \dfrac{1}{{{s^2}}}$, ${\ \ \ }$ $x{\rm{''}}\left( s \right) = \dfrac{2}{{{s^3}}}$, $y'\left( s \right) = \dfrac{2}{{{s^3}}}$, ${\ \ \ }$ $y{\rm{''}}\left( s \right) = - \dfrac{6}{{{s^4}}}$. By Eq. (13): $\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{x'\left( s \right)y{\rm{''}}\left( s \right) - y'\left( t \right)x{\rm{''}}\left( s \right)}}{{x'{{\left( s \right)}^3}}} = \dfrac{{2 - 6{s^2}}}{{{{\left( { - 1 + {s^2}} \right)}^3}}}$. Since $x'\left( 1 \right) = 0$, we cannot use Eq. (13) to evaluate $\dfrac{{{d^2}y}}{{d{x^2}}}$ at $s=1$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.