Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 12 - Parametric Equations, Polar Coordinates, and Conic Sections - 12.1 Parametric Equations - Exercises - Page 605: 83

Answer

Equation (13) is obtained by using the chain rule and the equations: $\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^2}}}$ and $\frac{{dt}}{{dx}} = \frac{1}{{x'\left( t \right)}}$

Work Step by Step

From Theorem 2 we have the slope of the tangent line: $\frac{{dy}}{{dx}} = \frac{{y'\left( t \right)}}{{x'\left( t \right)}}$ Taking the derivative of $\frac{{dy}}{{dx}}$ with respect to $t$ gives $\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{dt}}\left( {\frac{{y'\left( t \right)}}{{x'\left( t \right)}}} \right) = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^2}}}$ Next, we evaluate $\frac{{{d^2}y}}{{d{x^2}}}$ by using the chain rule of derivatives: $\frac{{{d^2}y}}{{d{x^2}}} = \frac{d}{{dx}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right)\frac{{dt}}{{dx}}$ Using $\frac{d}{{dt}}\left( {\frac{{dy}}{{dx}}} \right) = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^2}}}$ and $\frac{{dt}}{{dx}} = \frac{1}{{x'\left( t \right)}}$ we obtain the equation (13): (13) $\frac{{{d^2}y}}{{d{x^2}}} = \frac{{x'\left( t \right)y{\rm{''}}\left( t \right) - y'\left( t \right)x{\rm{''}}\left( t \right)}}{{x'{{\left( t \right)}^3}}}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.