Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.6 Exercises - Page 633: 29

Answer

Convergence

Work Step by Step

Given $$ \sum_{n=0}^{\infty} \frac{6^{n}}{(n+1)^{n}} $$ By using the ratio test , since $a_n= \sum_{n=0}^{\infty} \frac{6^{n}}{(n+1)^{n}}$ and $a_{n+1}=\sum_{n=0}^{\infty} \frac{6^{n+1}}{(n+2)^{n+1}}$ , then \begin{align*} \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|&=\lim _{n \rightarrow \infty}\left| \frac{6^{n+1}}{(n+2)^{n+1}} \frac{(n+1)^{n}}{6^{n}}\right|\\ &=\lim _{n \rightarrow \infty}\left| \frac{6(n+1)^{n} }{(n+2)^{n+1}} \right|\\ &=6\lim _{n \rightarrow \infty}\left| \frac{\left(n\left(1+\frac{1}{n}\right)\right)^n}{\left(n\left(1+\frac{2}{n}\right)\right)^{n\left(1+\frac{1}{n}\right)}}\right|\\ &=6\lim _{n \rightarrow \infty}\left|\frac{n^n\left(\frac{1}{n}+1\right)^n}{n^{n\left(\frac{1}{n}+1\right)}\left(\frac{2}{n}+1\right)^{n\left(\frac{1}{n}+1\right)}}\right|\\ &=6\cdot \frac{\lim _{n\to \infty \:}\left(\left(1+\frac{1}{n}\right)^n\right)}{\lim _{n\to \infty \:}\left(n\left(\frac{2}{n}+1\right)^{n\left(\frac{1}{n}+1\right)}\right)}\\ &=6\cdot \frac{e}{ \infty }\\ &=0<1 \end{align*} Hence the given series is convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.