Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 9 - Infinite Series - 9.4 Exercises - Page 616: 9

Answer

Converges by Th.9.12.

Work Step by Step

Th. 9.12 Direct Comparison Test: Let $0 < a_{n} \leq b_{n}$ for all $n$. 1. If $\displaystyle \sum_{n=1}^{\infty}b_{n}$ converges, then $\displaystyle \sum_{n=1}^{\infty}a_{n}$ converges. 2. If $\displaystyle \sum_{n=1}^{\infty}a_{n}$ diverges, then $\displaystyle \sum_{n=1}^{\infty}b_{n}$ diverges. --------------- The series $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n^{2}}$ is a convergent p-series ($p > 1).$ So we take $b_{n}= \displaystyle \frac{1}{n^{2}}$ Taking $a_{n}=\displaystyle \frac{1}{n!}$ and using the discussion in Example 5 of Sec 9-1, for large n, $n! > 2^{n}$, and the exponential function $2^{x}$ grows much faster than $x^{2}$, so , for large n, $(n \geq 5)$ $n! > 2^{n} > n^{2}$ , so $0 < \displaystyle \frac{1}{n!} < \frac{1}{n^{2}}$ Since $0 < a_{n} \leq b_{n} ,$ case 1 applies, that is, $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n!}$ also converges.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.